
Lecture 29: Discrete Fourier Analysis on the
Boolean Hypercube (Introduction)
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Focus of Study

Functions with domain {0, 1}n and range R
Let f : {0, 1}n → R
We shall always use N = 2n

Any n-bit binary string shall be canonically interpreted as an
integer in the range {0, 1, . . . ,N − 1}
For any function f : {0, 1}n → R we shall associate the
following unique vector in RN(

f (0), f (1), . . . , f (N − 1)
)
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Kronecker Basis

For i ∈ {0, 1, . . . ,N − 1}, we define the function
δi : {0, 1}n → R as follows

δi (x) =

{
1, if x = i

0, otherwise

Note that the functions {δ0, δ1, . . . , δN−1} form a basis for RN

Any function f can be expressed as a linear combination of
these basis functions as follows

f = f (0)δ0 + f (1)δ1 +· · ·+ f (N − 1)δN−1

Our goal is to study the function f in a new basis, namely, the
“Fourier Basis,” that shall be introduced next. We emphasize
that this basis need not be unique
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Fourier Basis Functions

For S = (S1, S2, . . . ,Sn) ∈ {0, 1}n, we define the following
function

χS(x) := (−1)
∑n

i=1 Si ·xi

Several introductory materials on Fourier analysis interpret S
as a subset of {1, 2, . . . , n}. Although, the definition presented
here is equivalent to this interpretation, I personally prefer this
notation because it generalized to other domains.
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An Example

Suppose n = 3 and we are working with functions
f : {0, 1}n → R
Note that there are 8 different Fourier basis functions

χ000(x) = (−1)0 = 1
χ100(x) = (−1)x1

χ010(x) = (−1)x2

χ110(x) = (−1)x1+x2

χ001(x) = (−1)x3

χ101(x) = (−1)x1+x3

χ011(x) = (−1)x2+x3

χ111(x) = (−1)x1+x2+x3
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(All non-trivial) Basis Functions are balanced I

Lemma ∑
x∈{0,1}n

χR(x) =

{
N, if R = 0
0, otherwise

Proof:

Suppose R = 0, then we have∑
x∈{0,1}n

χR(x) =
∑

x∈{0,1}n
1 = N
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(All non-trivial) Basis Functions are balanced II

Suppose R 6= 0. Let {i1, i2, . . . , ir} be the set of indices
{i : Ri = 1}∑
x∈{0,1}n

χR(x) =
∑

x∈{0,1}n
(−1)R1x1+···+Rnxn

=
∑

x∈{0,1}n
(−1)Ri1xi1+···+Rir xir

=
∑

x−i1∈{0,1}
n−1

(−1)Ri2xi2+···+Rir xir
∑

xi1∈{0,1}

(−1)xi1

=
∑

x−i1∈{0,1}
n−1

(−1)Ri2xi2+···+Rir xir
(
(−1)0 + (−1)1

)
=

∑
x−i1∈{0,1}

n−1

(−1)Ri2xi2+···+Rir xir · 0 = 0
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Inner Product

Definition (Inner Product)

The inner-product of two functions f , g : {0, 1}n → R is defined as
follows

〈f , g〉 := 1
N

∑
x∈{0,1}n

f (x)g(x)
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Orthonormality of the Basis Functions I

Lemma

〈χS , χT 〉 =

{
1, if S = T

0, otherwise

Proof:

〈χS , χT 〉 =
1
N

∑
x∈{0,1}n

χS(x)χT (x)

=
1
N

∑
x∈{0,1}n

(−1)(S1+T1)x1+...+(Sn+Tn)xn

Note that if Si = Ti then (−1)(Si+Ti )xi = 1; otherwise
(−1)(Si+Ti )xi = (−1)xi
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Orthonormality of the Basis Functions II

Define R such that Ri = 1 if Si 6= Ti ; otherwise Ri = 0

Then, the right-hand side expression becomes

〈χS , χT 〉 =
1
N

∑
x∈{0,1}n

(−1)R1x1+···+Rnxn

=
1
N

∑
x∈{0,1}n

χR(x)

=

{
1
N · N, if R = 0
1
N · 0, otherwise

Note that R = 0 if and only if S = T . This observation
completes the proof
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Summary

Our objective is to study a function f : {0, 1}n → R
Every function f is equivalently represented as the vector(
f (0), f (1), . . . , f (N − 1)

)
∈ RN , where N = 2n

For S = S1S2 . . . Sn ∈ {0, 1}n, define the following function

χS(x) := (−1)S1x1+S2x2+···+Snxn ,

where x = x1x2 . . . xn ∈ {0, 1}n

We defined an inner-product of functions

〈f , g〉 := 1
N

∑
x∈{0,1}n

f (x)g(x)

We showed that
{
χS : S ∈ {0, 1}N

}
is an orthonormal basis.

That is,

〈χS , χT 〉 =

{
0, if S 6= T

1, if S = T
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Fourier Coefficients

Since
{
χS : S ∈ {0, 1}n

}
is an orthonormal basis, we can

express any f as follows

f = f̂ (0)χ0 + f̂ (1)χ1 +· · ·+ f̂ (N − 1)χN−1,

where f̂ (S) ∈ R and S ∈ {0, 1}n

We interpret
(
f̂ (0), f̂ (1), . . . , f̂ (N − 1)

)
as a function f̂
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Fourier Transformation

Fourier Transformation is a basis change that maps the
function f to the function f̂

We shall represent it as f F7→ f̂ , where F is the Fourier
Transformation
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Linearity of Fourier Transformation I

Note that we have the following property. For any S ∈ {0, 1}n,
we have 〈f , χS〉 = f̂ (S). So, we get

(
f (0)f (1)· · · f (N − 1)

)
· 1
N

(
χS(0)χS(1)· · ·χS(N − 1)

)ᵀ
= f̂ (S)

Define the matrix

F =
1
N


χ0(0) χ1(0) · · · χN−1(0)
χ0(1) χ1(1) · · · χN−1(1)

...
...

. . .
...

χ0(N − 1) χ1(N − 1) · · · χN−1(N − 1)


From the property mentioned above, note that we have the
identity

f · F = f̂
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Linearity of Fourier Transformation II

Claim
For two function f , g : {0, 1}n → R, we have

̂(f + g) = f̂ + ĝ

Proof.

̂(f + g) = (f + g)F = f F + gF = f̂ + ĝ
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Linearity of Fourier Transformation III

Claim
For a function f : {0, 1}n → R and c ∈ R, we have

(̂cf ) = cf̂

Proof.

(̂cf ) = (cf )F = c(f F) = cf̂
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Fourier of a Fourier I

Theorem
Let f : {0, 1}n → R. Then, we have(̂

f̂
)
=

1
N
· f

Proof.
We shall prove that F · F = 1

N IN×N . This result shall directly

imply that
(̂
f̂
)
= (f F)F = f

(
1
N IN×N

)
= 1

N · f

Let us compute the element (F · F)i ,j . This element is the
product of the i-th row of F and the j-th colum of F

The j-th colum of F is
(

1
Nχj

)ᵀ
The i-th row of F is

(
χ0(i)χ1(i)· · ·χN−1(i)

)
Note that χS(x) = χx(S), i.e., the matrix F is symmetric
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Fourier of a Fourier II

So, the i-th row of F is 1
Nχi

Therefore, we have (FF)i ,j =
1
N2 · χi · χᵀ

j = 1
N

〈
χi , χj

〉
. The

orthonormality of the Fourier basis completes the proof
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Plancherel Theorem and Parseval’s Identity I

Theorem (Plancherel)

Suppose f , g : {0, 1}n → R. Then, the following holds

〈f , g〉 =
∑

S∈{0,1}n
f̂ (S)ĝ(S)
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Plancherel Theorem and Parseval’s Identity II

Proof.

〈f , g〉 =

〈 ∑
S∈{0,1}n

f̂ (S)χS ,
∑

T∈{0,1}n
ĝ(T )χT

〉

=
∑

S∈{0,1}n
f̂ (S)

〈
χS ,

∑
T∈{0,1}n

ĝ(T )

〉

=
∑

S∈{0,1}n
f̂ (S)

∑
T∈{0,1}n

ĝ(T )〈χS , χT 〉

=
∑

S∈{0,1}n
f̂ (S)ĝ(S)
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Plancherel Theorem and Parseval’s Identity III

Note that, if f , g : {0, 1}n → {+1,−1} and we have 〈f , g〉 = 1− ε,
then f and g disagree at εN inputs. Intuitively, if

∣∣〈f , g〉∣∣ is close to
1 then the functions are highly correlated. On the other hand, if∣∣〈f , g〉∣∣ is close to 0 then the functions are independent
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Plancherel Theorem and Parseval’s Identity IV

Theorem (Parseval’s Identity)

Suppose f : {0, 1}n → R. Then

〈f , f 〉 =
∑

S∈{0,1}n
f̂ (S)2

Substitute f = g in Plancherel’s theorem.
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Plancherel Theorem and Parseval’s Identity V

Corollary

If f : {0, 1}n → {+1,−1}, then
∑

S∈{0,1}n f̂ (S)
2 = 1

Follows from the fact that 〈f , f 〉 = 1 and the Parseval’s identity
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