Lecture 29: Discrete Fourier Analysis on the Boolean Hypercube (Introduction)

- Functions with domain $\{0,1\}^{n}$ and range \mathbb{R}
- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- We shall always use $N=2^{n}$
- Any n-bit binary string shall be canonically interpreted as an integer in the range $\{0,1, \ldots, N-1\}$
- For any function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ we shall associate the following unique vector in \mathbb{R}^{N}

$$
(f(0), f(1), \ldots, f(N-1))
$$

- For $i \in\{0,1, \ldots, N-1\}$, we define the function $\delta_{i}:\{0,1\}^{n} \rightarrow \mathbb{R}$ as follows

$$
\delta_{i}(x)= \begin{cases}1, & \text { if } x=i \\ 0, & \text { otherwise }\end{cases}
$$

- Note that the functions $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{N-1}\right\}$ form a basis for \mathbb{R}^{N}
- Any function f can be expressed as a linear combination of these basis functions as follows

$$
f=f(0) \delta_{0}+f(1) \delta_{1}+\cdots+f(N-1) \delta_{N-1}
$$

- Our goal is to study the function f in a new basis, namely, the "Fourier Basis," that shall be introduced next. We emphasize that this basis need not be unique

Fourier Basis Functions

- For $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right) \in\{0,1\}^{n}$, we define the following function

$$
\chi_{S}(x):=(-1)^{\sum_{i=1}^{n} S_{i} \cdot x_{i}}
$$

- Several introductory materials on Fourier analysis interpret S as a subset of $\{1,2, \ldots, n\}$. Although, the definition presented here is equivalent to this interpretation, I personally prefer this notation because it generalized to other domains.

An Example

- Suppose $n=3$ and we are working with functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Note that there are 8 different Fourier basis functions

$$
\begin{aligned}
\chi_{000}(x) & =(-1)^{0}=1 \\
\chi_{100}(x) & =(-1)^{x_{1}} \\
\chi_{010}(x) & =(-1)^{x_{2}} \\
\chi_{110}(x) & =(-1)^{x_{1}+x_{2}} \\
\chi_{001}(x) & =(-1)^{x_{3}} \\
\chi_{101}(x) & =(-1)^{x_{1}+x_{3}} \\
\chi_{011}(x) & =(-1)^{x_{2}+x_{3}} \\
\chi_{111}(x) & =(-1)^{x_{1}+x_{2}+x_{3}}
\end{aligned}
$$

Lemma

$$
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)= \begin{cases}N, & \text { if } R=0 \\ 0, & \text { otherwise }\end{cases}
$$

Proof:

- Suppose $R=0$, then we have

$$
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)=\sum_{x \in\{0,1\}^{n}} 1=N
$$

- Suppose $R \neq 0$. Let $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ be the set of indices $\left\{i: R_{i}=1\right\}$

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)= & \sum_{x \in\{0,1\}^{n}}(-1)^{R_{1} x_{1}+\cdots+R_{n} x_{n}} \\
& =\sum_{x \in\{0,1\}^{n}}(-1)^{R_{i_{1} x_{1}}+\cdots+R_{i_{r} x_{i r}}} \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r} x_{i r}}} \sum_{x_{i_{1}} \in\{0,1\}}(-1)^{x_{i_{1}}} \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r}} x_{i_{r}}}\left((-1)^{0}+(-1)^{1}\right) \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r}} x_{i_{r}}} \cdot 0=0
\end{aligned}
$$

Inner Product

Definition (Inner Product)

The inner-product of two functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ is defined as follows

$$
\langle f, g\rangle:=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

Orthonormality of the Basis Functions

Lemma

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle= \begin{cases}1, & \text { if } S=T \\ 0, & \text { otherwise }\end{cases}
$$

Proof:
-

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \chi_{S}(x) \chi_{T}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{\left(S_{1}+T_{1}\right) x_{1}+\ldots+\left(S_{n}+T_{n}\right) x_{n}}
\end{aligned}
$$

- Note that if $S_{i}=T_{i}$ then $(-1)^{\left(S_{i}+T_{i}\right) x_{i}}=1$; otherwise $(-1)^{\left(S_{i}+T_{i}\right) x_{i}}=(-1)^{x_{i}}$

Orthonormality of the Basis Functions

- Define R such that $R_{i}=1$ if $S_{i} \neq T_{i}$; otherwise $R_{i}=0$
- Then, the right-hand side expression becomes

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{R_{1} x_{1}+\cdots+R_{n} x_{n}} \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \chi_{R}(x) \\
& = \begin{cases}\frac{1}{N} \cdot N, & \text { if } R=0 \\
\frac{1}{N} \cdot 0, & \text { otherwise }\end{cases}
\end{aligned}
$$

- Note that $R=0$ if and only if $S=T$. This observation completes the proof

Summary

- Our objective is to study a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Every function f is equivalently represented as the vector $(f(0), f(1), \ldots, f(N-1)) \in \mathbb{R}^{N}$, where $N=2^{n}$
- For $S=S_{1} S_{2} \ldots S_{n} \in\{0,1\}^{n}$, define the following function

$$
\chi_{S}(x):=(-1)^{S_{1} x_{1}+S_{2} x_{2}+\cdots+S_{n} x_{n}},
$$

where $x=x_{1} x_{2} \ldots x_{n} \in\{0,1\}^{n}$

- We defined an inner-product of functions

$$
\langle f, g\rangle:=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

- We showed that $\left\{\chi_{S}: S \in\{0,1\}^{N}\right\}$ is an orthonormal basis. That is,

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle= \begin{cases}0, & \text { if } S \neq T \\ 1, & \text { if } S=T\end{cases}
$$

- Since $\left\{\chi_{S}: S \in\{0,1\}^{n}\right\}$ is an orthonormal basis, we can express any f as follows

$$
f=\widehat{f}(0) \chi_{0}+\widehat{f}(1) \chi_{1}+\cdots+\widehat{f}(N-1) \chi_{N-1},
$$

where $\widehat{f}(S) \in \mathbb{R}$ and $S \in\{0,1\}^{n}$

- We interpret $(\widehat{f}(0), \widehat{f}(1), \ldots, \widehat{f}(N-1))$ as a function \widehat{f}
- Fourier Transformation is a basis change that maps the function f to the function \widehat{f}
- We shall represent it as $f \stackrel{\mathcal{F}}{\mapsto} \widehat{f}$, where \mathcal{F} is the Fourier Transformation

Linearity of Fourier Transformation

- Note that we have the following property. For any $S \in\{0,1\}^{n}$, we have $\left\langle f, \chi_{S}\right\rangle=\widehat{f}(S)$. So, we get

$$
(f(0) f(1) \cdots f(N-1)) \cdot \frac{1}{N}\left(\chi_{s}(0) \chi_{s}(1) \cdots \chi_{s}(N-1)\right)^{\top}=\widehat{f}(S)
$$

- Define the matrix

$$
\mathcal{F}=\frac{1}{N}\left[\begin{array}{cccc}
\chi_{0}(0) & \chi_{1}(0) & \cdots & \chi_{N-1}(0) \\
\chi_{0}(1) & \chi_{1}(1) & \cdots & \chi_{N-1}(1) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{0}(N-1) & \chi_{1}(N-1) & \cdots & \chi_{N-1}(N-1)
\end{array}\right]
$$

- From the property mentioned above, note that we have the identity

$$
f \cdot \mathcal{F}=\widehat{f}
$$

Claim

For two function $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$, we have

$$
(\widehat{f+g})=\widehat{f}+\widehat{g}
$$

Proof.

$$
(\widehat{f+g})=(f+g) \mathcal{F}=f \mathcal{F}+g \mathcal{F}=\widehat{f}+\widehat{g}
$$

Claim

For a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$, we have

$$
\widehat{(c f)}=c \widehat{f}
$$

Proof.

$$
\widehat{(c f)}=(c f) \mathcal{F}=c(f \mathcal{F})=c \widehat{f}
$$

Theorem

Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then, we have

$$
\widehat{(\widehat{f})}=\frac{1}{N} \cdot f
$$

Proof.

- We shall prove that $\mathcal{F} \cdot \mathcal{F}=\frac{1}{N} I_{N \times N}$. This result shall directly imply that $\widehat{(\widehat{f})}=(f \mathcal{F}) \mathcal{F}=f\left(\frac{1}{N} I_{N \times N}\right)=\frac{1}{N} \cdot f$
- Let us compute the element $(\mathcal{F} \cdot \mathcal{F})_{i, j}$. This element is the product of the i-th row of \mathcal{F} and the j-th colum of \mathcal{F}
- The j-th colum of \mathcal{F} is $\left(\frac{1}{N} \chi_{j}\right)^{\top}$
- The i-th row of \mathcal{F} is $\left(\chi_{0}(i) \chi_{1}(i) \cdots \chi_{N-1}(i)\right)$
- Note that $\chi_{S}(x)=\chi_{x}(S)$, i.e., the matrix \mathcal{F} is symmetric
- So, the i-th row of \mathcal{F} is $\frac{1}{N} \chi_{i}$
- Therefore, we have $(\mathcal{F F})_{i, j}=\frac{1}{N^{2}} \cdot \chi_{i} \cdot \chi_{j}^{\top}=\frac{1}{N}\left\langle\chi_{i}, \chi_{j}\right\rangle$. The orthonormality of the Fourier basis completes the proof

Theorem (Plancherel)
Suppose $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then, the following holds

$$
\langle f, g\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S)
$$

Proof.

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \chi_{S}, \sum_{T \in\{0,1\}^{n}} \widehat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)\left\langle\chi_{S}, \sum_{T \in\{0,1\}^{n}} \widehat{g}(T)\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \sum_{T \in\{0,1\}^{n}} \widehat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

Note that, if $f, g:\{0,1\}^{n} \rightarrow\{+1,-1\}$ and we have $\langle f, g\rangle=1-\varepsilon$, then f and g disagree at εN inputs. Intuitively, if $|\langle f, g\rangle|$ is close to 1 then the functions are highly correlated. On the other hand, if
$|\langle f, g\rangle|$ is close to 0 then the functions are independent

Theorem (Parseval's Identity)
Suppose $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then

$$
\langle f, f\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}
$$

Substitute $f=g$ in Plancherel's theorem.

Plancherel Theorem and Parseval's Identity

Corollary
If $:\{0,1\}^{n} \rightarrow\{+1,-1\}$, then $\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=1$
Follows from the fact that $\langle f, f\rangle=1$ and the Parseval's identity

